" W EBSENSE.

SECURING PRODUCTIVITY

xecutable Encryption
for Pocket PC

and
Smartphone Devices

Nicolas Brulez
Virus Researcher

VB2005

Agenda

= Introduction
= Encrypting Windows Files on Intel x86

= Why it doesn’t work on Windows Mobile (on
ARM)?

 WinCE / Windows Mobile PE Loader
« Cache
= Encrypting Windows Mobile Files (ARM)
* Messing with the PE Loader
* Flushing the cache
* Methods of Encryption
- = Anti Debugging Techniques on ARM
= Conclusion

.

Introduction

= Most Malwares are packed/encrypted nowadays

= Existing malwares for WinCE or Symbian are not
encrypted and thus « easy » to analyse.

= Pocket PC and Smartphone executables are
using Windows Mobile, and thus the PE File
Format

= We might expect more malwares targeting
devices using WinCE / Windows Mobile in the
future

= Malware authors may pack/encrypt their new
creations in order to protect their code

4

4

WInCE Architecture

Pocket PC and Smartphone Devices use RISC
Processors

There are different types of ARM processors :
ARM, StrongARM, Xscale etc..

WInCE is based on a revised and reduced version
of Windows 2K

The main system dll is the COREDLL.dII
System DLLs are inside the ROM
XIP : eXecute In Place (used to save memory)

ARM Architecture

= ARM General Registers: R0-R15

— SP Register (R13) is the stack pointer

— LR Register (R14) holds the return value (for function
calls for instance)

— PC Register (Program Counter or R15) holds the current
instruction address+8 (Because of the 3 steps Pre
Fetching)

— Status Registers are R28-R29

4

www.arm.com for more information

—
L. WWEEBESEMNSE

4

Tools

MS EVC 4 Debugger
MS EVC ARM Assembler
IDA Pro Pocket PC Debugger

MASM for writing my Encryptor

EESEMNSE,

Encrypting Windows Files on Intel x86
= We need good knowledge of the PE File Format

= ASM knowledge for writing the Loader

= We need to encrypt the code section (or any other
section that can be encrypted)

= We can add import handling/protection, but this
isn’t mandatory for most files (Some files need it
though)

4

Encrypting Windows Files on Intel x86

= We need to update the PE Header depending of
how we modified our file. (SizeOflmage, Sections
Characteristics, Entry Point, Section Alignment
etc)

= Once encrypted, the new entry point starts with
the loader

4

= Loader will decrypt our sections in memory
before jumping to the Original Entry Point. (OEP)

Why it doesn’t work on CE/ARM

devices?
= Windows Mobile PE Loader:

— Windows and Windows Mobile share the same
file format but their PE loader is different

— The Windows Mobile PE Loader is working
differently

4

— We have to be very careful on what we encrypt,
and most importantly, decrypt

Why it doesn’t work on CE/ARM
devices?

— On Windows we can write inside the whole
section virtual memory if we want to, not on
Windows Mobile

— The encrypted file won’t run

— The Raw Size is actually bigger than the Virtual
Size on Windows Mobile files

4

— This is probably done because of the limited
amount of memory we have on current devices

Why it doesn’t work on CE/ARM

devices?
= CACHE
— On x86 computers, we don’t have to worry

about flushing the cache when we decrypt
instructions

— We do need to take care of it on ARM devices
(like in the old days)

i — There aren’t much ways to clean the cache in a
stable maner on Windows Mobile

— On the other hand, we can use that as Anti
debugging or Anti Emulation tricks

Encrypting Windows Mobile Files

= Messing with the PE Loader
— The Windows PE Loader is very friendly

— We can do almost anything with it :
- EP before any sections
* Fancy section raw size

* Write anywhere inside section Virtual
Memory

o

f 3 — On the other hand, Windows Mobile PE Loader
isn’t as nice

Encrypting Windows Mobile Files

— The quick and dirty Windows way won’t work

— We need to use the Virtual Size of the section,
to know the number of bytes we need to

encrypt

— We can also increase the VirtualSize to match
the raw Size and it will work

.

#

— But It will also take more memory than the
original application

Encrypting Windows Mobile Files

= FLUSHING THE CACHE

— Unlike x86 computers, we need to flush the
cache if we want to execute decrypted code
(Else we will execute encrypted code, and our
application will crash)

— There are privileged instructions to do that on
ARM devices, but we can’t call them from User
Land as it simply crash the device (or even
does a hard reset sometimes!)

4

— The only way i could find was to use the old
and nice FlushlnstructionCache API function

Encrypting Windows Mobile Files

— Fortunately, it is possible to rip the code of
this function to avoid Dynamic API function

resolution. (Like we have on most packers on
Windows)

— The WinDust Pocket PC Virus does Dynamic
APl Resolution

— The FlushinstructionCache function actually
use a syscall ©

— It might not work on future versions of
Windows Mobile, but so far, so good

Encrypting Windows Mobile Files

— For better compatibility, we need to use
Dynamic API Function Resolution or add
another Import Image Descriptor to the import
table of the file we want to encrypt

— Windows Mobile will do the job for us

— On the other hand, this will add a weakness to
the packer/protector as the API can be hooked.

— We could also put a breakpoint on it

Encrypting Windows Mobile Files

= | came up with two simple (but working)
encryption methods while i was doing my
research

— Dword decryption with a single key and a loop
(very similar to Windows Packers)

— Dword based Encryption: Each Encrypted
dword is moved inside the Cryptor section and
we have a single key for every dwords of the
section

4

Encrypting Windows Mobile Files

vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:
vile:

0015000
0015000
0015000
00015000
00015000
00015000
00015004
00015008
0001560C
oee1500C
oee1500C
015010
0015014
00015018
Aee1501C
00015020
00015024
00015028
0001502C
00015030
0015034
0015038
0e01503C
0001503C
A001503C

0001503C

00015040
00015044
00015048

Dword decryption with a single key

EXPORT start
start

: FUNCTION CHUNK AT .text:000110C0 SIZE OB0OBR28 BYTES

LDR RS, =sub_11000
LDR RE6, =0x22222222
LDR R7, =0x278
loc_1500C . CODE XREF: start+20]j
LDR R8, [R5]
ADD R8, R8, R6
STR R8, [R5]
ADD RS, RS, #4
SUBS RT, R7, #4
BNE loc_1500C
MOU RO, HOx42
LDR R1, =sub_11000
LDR R2, =0x278
LDR R3, =OxFOOOFTEC
MOU LR, PC
MOU PC, R3
B loc_110C0

: End of function start

DCD sub_11008 : DATA XREF: startTr
DCD 0x22222222 ; DATA XREF: start+4Tr

DCD 0x278 - DATA XREF: start+8Tr
. |
. WWEBSEMNMSE

off_15040
dword_15044
dword_15048

Encrypting Windows Mobile Files

= Dwords moved in the Packer Section

*vile: 00015000 LDR R5, =sub_11000
*vile: 00015004 LDR Re, -OxE92D4D10
*vile:00015008 STR Re, [R5]
*vile:0001500C B loc_15018
Uile:@B01500C ; ~--- - - - - oo S momsooooooooes
*vile:00015010 off_15010 DCD sub_11000 ; DATA XREF: startTr

*wile:00015014 dword_15014 DCD OXE92D4010 ; DATA XREF: start+4tr
UL1@:@BOT5018 | === === oo
vile:00015018

vile:00015018 loc_15018 : CODE XREF: start+CTj
*vile:00015018 LDR RS, =loc_11004
*vile:0001501C LDR R6, =OxES9F1054
*vile: 00015020 STR R6, [R5]
*vile: 00015024 B loc_15030
Uile:BOB15O2H ;| —---- - - - m oo oo oo oo oo oo
4 *vile:00015028 off_15028 DCD loc_11004 . DATA XREF: start:loc_15018Tr
A4t uile:0001502C dword_15602C DCD OxES9F 1054 . DATA XREF: start+1CTr
P L Uile:BOOT5@30 | — - - - - - - oo oo o oo
Jiﬁ vile: 00015030
vf‘ e vile:00015030 loc_15030 . CODE XREF: start+24tj
/ . *uyile:00015030 LDR RS, zloc_11008
. *yile:00015034 LDR R6, =OxES9FOO4C
*vile: 00015038 STR R6, [R5]
*yile:0001503C B loc_15048
Uile:B@BTI5@30 ; —- - === - - == mmmm oo o oo oo e
*vile:DEO15040 off_15040 DCD loc_11008 . DATA XREF: start:loc_15630Tr

*uile: 00015044 dword_15044 DCD OxESS9FOO04C : DATA XREF: start+34tr
Uile:-B0015048 @ —-------- - e e e e — oo -
——
. WWEBSEMNMSE

PROS AND CONS OF THOSE METHODS

= Encryption with a normal Loop
— Pros
* The Loader is very small
* Very Fast

— Cons
« Same code for the whole section
- Same key (easy to break it)

* It is easy to bypass the decryption using
breakpoints

 We need to flush the cache
- Some files won’t run correctly

4

PROS AND CONS OF THOSE METHODS

= Dwords Moved and Encrypted with different keys
— Pros

 Different block of code for every dword with different
keys or algorithm if we want

 We can write « Pseudo Polymorphic » loaders,
especially with all the registers we have on ARM

* If well done, there is no easy way to bypass the
whole decryption (must not be linear of course)

 Emulation is slower as it has a lot of operations done
for every dwords

* NO need to flush the cache
 Worked on every files i tested it on

4

—
L. WWEEBESEMNSE

PROS AND CONS OF THOSE METHODS

— Cons

* The encrypted file is quite bigger (but we
could remove the first section completely to
decrease file size)

- Slower than a normal decryption loop

More Encryption?

= |tis possible to use crypto to encrypt our code,
now that we know how to flush the cache, and
what need to be encrypted/decrypted

* Those two methods were just for testing purpose

= | have a more complex protector already working
©

4

Anti Debugging Tricks on WinMobile / ARM

= The best Anti Debugging trick i could find was
playing with the cache

= We can dynamically encrypt / modify instructions
that should NOT be modified inside our protector

= |If we don’t flush the cache, our application will
run fine, as our modifications will be ignored

.

= What happens when we debug such code ?

™
-

. Debuggers flush the cache, and we end up
executing garbage code or we could be
redirected to fake routines!

4

Anti Debugging Tricks on Win Mobile / ARM

We can use timing detection using GetTickCount API
function or similar functions (Like we have on Windows
already)

When playing with the new IDA Remote Debugger for
Pocket PC, i found interesting functions:

- AttachDebugger
 DebuggerConnect

| invited anyone interested to do some research on those
functions ©

—
L. WWEEBESEMNSE

4

Conclusion

Executable Encryption is possible on Windows
Mobile and ARM devices

More research needs to be done

We need to work on unpacking tools for those
packers (I already have a few ones)

If you want more information, read my paper in
the proceedings or email me

The two examples here are for proof of concept,
but i am working on ARMadillo for Pocket PC
(and it works ;)

Questions?

= If you have any questions, please talk SLOOOWLY, or just
talk to me after the presentation. (Better :p)

= Thanks ©

—
. WWEBSEMNMSE

	Executable Encryptionfor Pocket PC and Smartphone Devices
	Agenda
	Introduction
	WinCE Architecture
	ARM Architecture
	Tools
	Encrypting Windows Files on Intel x86
	Encrypting Windows Files on Intel x86
	Why it doesn’t work on CE/ARM devices?
	Why it doesn’t work on CE/ARM devices?
	Why it doesn’t work on CE/ARM devices?
	Encrypting Windows Mobile Files
	Encrypting Windows Mobile Files
	Encrypting Windows Mobile Files
	Encrypting Windows Mobile Files
	Encrypting Windows Mobile Files
	Encrypting Windows Mobile Files
	Encrypting Windows Mobile Files
	Encrypting Windows Mobile Files
	PROS AND CONS OF THOSE METHODS
	PROS AND CONS OF THOSE METHODS
	PROS AND CONS OF THOSE METHODS
	More Encryption?
	Anti Debugging Tricks on WinMobile / ARM
	Anti Debugging Tricks on Win Mobile / ARM
	Conclusion
	Questions?

